Asterisk - The Open Source Telephony Project  18.5.0
preprocess.c
Go to the documentation of this file.
1 /*
2  * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
3  * Universitaet Berlin. See the accompanying file "COPYRIGHT" for
4  * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
5  */
6 
7 /* $Header$ */
8 
9 #include <stdio.h>
10 #include <assert.h>
11 
12 #include "private.h"
13 
14 #include "gsm.h"
15 #include "proto.h"
16 
17 /* 4.2.0 .. 4.2.3 PREPROCESSING SECTION
18  *
19  * After A-law to linear conversion (or directly from the
20  * Ato D converter) the following scaling is assumed for
21  * input to the RPE-LTP algorithm:
22  *
23  * in: 0.1.....................12
24  * S.v.v.v.v.v.v.v.v.v.v.v.v.*.*.*
25  *
26  * Where S is the sign bit, v a valid bit, and * a "don't care" bit.
27  * The original signal is called sop[..]
28  *
29  * out: 0.1................... 12
30  * S.S.v.v.v.v.v.v.v.v.v.v.v.v.0.0
31  */
32 
33 
34 void Gsm_Preprocess P3((S, s, so),
35  struct gsm_state * S,
36  word * s,
37  word * so ) /* [0..159] IN/OUT */
38 {
39  word z1 = S->z1;
40  longword L_z2 = S->L_z2;
41  word mp = S->mp;
42  word s1;
43  word SO;
44  ulongword utmp; /* for L_ADD */
45  register int k = 160;
46 
47  (void) utmp;
48 
49  while (k--) {
50 
51  /* 4.2.1 Downscaling of the input signal
52  */
53  /* SO = SASR( *s, 3 ) << 2;*/
54  SO = SASR( *s, 1 ) & ~3;
55  s++;
56 
57  assert (SO >= -0x4000); /* downscaled by */
58  assert (SO <= 0x3FFC); /* previous routine. */
59 
60 
61  /* 4.2.2 Offset compensation
62  *
63  * This part implements a high-pass filter and requires extended
64  * arithmetic precision for the recursive part of this filter.
65  * The input of this procedure is the array so[0...159] and the
66  * output the array sof[ 0...159 ].
67  */
68  /* Compute the non-recursive part
69  */
70 
71  s1 = SO - z1; /* s1 = gsm_sub( *so, z1 ); */
72  z1 = SO;
73 
74  assert(s1 != MIN_WORD);
75 
76  /* SJB Remark: float might be faster than the mess that follows */
77 
78  /* Compute the recursive part
79  */
80 
81  /* Execution of a 31 bv 16 bits multiplication
82  */
83  {
84  word msp;
85 #ifndef __GNUC__
86  word lsp;
87 #endif
88  longword L_s2;
89  longword L_temp;
90 
91  L_s2 = s1;
92  L_s2 <<= 15;
93 #ifndef __GNUC__
94  msp = (word)SASR( L_z2, 15 );
95  lsp = (word)(L_z2 & 0x7fff); /* gsm_L_sub(L_z2,(msp<<15)); */
96 
97  L_s2 += GSM_MULT_R( lsp, 32735 );
98  L_temp = (longword)msp * 32735; /* GSM_L_MULT(msp,32735) >> 1;*/
99  L_z2 = GSM_L_ADD( L_temp, L_s2 );
100  /* above does L_z2 = L_z2 * 0x7fd5/0x8000 + L_s2 */
101 #else
102  L_z2 = ((long long)L_z2*32735 + 0x4000)>>15;
103  /* alternate (ansi) version of above line does slightly different rounding:
104  * L_temp = L_z2 >> 9;
105  * L_temp += L_temp >> 5;
106  * L_temp = (++L_temp) >> 1;
107  * L_z2 = L_z2 - L_temp;
108  */
109  L_z2 = GSM_L_ADD(L_z2,L_s2);
110 #endif
111  /* Compute sof[k] with rounding
112  */
113  L_temp = GSM_L_ADD( L_z2, 16384 );
114 
115  /* 4.2.3 Preemphasis
116  */
117 
118  msp = (word)GSM_MULT_R( mp, -28180 );
119  mp = (word)SASR( L_temp, 15 );
120  *so++ = GSM_ADD( mp, msp );
121  }
122  }
123 
124  S->z1 = z1;
125  S->L_z2 = L_z2;
126  S->mp = mp;
127 }
static word GSM_ADD(longword a, longword b)
#define GSM_L_ADD(a, b)
#define S(e)
#define SASR(x, by)
#define GSM_MULT_R(a, b)
#define MIN_WORD
void Gsm_Preprocess P3((S, s, so), struct gsm_state *S, word *s, word *so)
Definition: preprocess.c:34
long longword
unsigned long ulongword
short word