Asterisk - The Open Source Telephony Project  18.5.0
Functions | Variables
vparms.c File Reference
#include "f2c.h"
Include dependency graph for vparms.c:

Go to the source code of this file.

Functions

int vparms_ (integer *vwin, real *inbuf, real *lpbuf, integer *buflim, integer *half, real *dither, integer *mintau, integer *zc, integer *lbe, integer *fbe, real *qs, real *rc1, real *ar_b__, real *ar_f__)
 

Variables

static real c_b2 = 1.f
 

Function Documentation

◆ vparms_()

int vparms_ ( integer vwin,
real inbuf,
real lpbuf,
integer buflim,
integer half,
real dither,
integer mintau,
integer zc,
integer lbe,
integer fbe,
real qs,
real rc1,
real ar_b__,
real ar_f__ 
)

Definition at line 134 of file vparms.c.

References abs, c_b2, i_nint(), max, min, r_sign(), and stop.

Referenced by voicin_().

138 {
139  /* System generated locals */
140  integer inbuf_offset, lpbuf_offset, i__1;
141  real r__1, r__2;
142 
143  /* Builtin functions */
144  double r_sign(real *, real *);
145  integer i_nint(real *);
146 
147  /* Local variables */
148  integer vlen, stop, i__;
149  real e_pre__;
150  integer start;
151  real ap_rms__, e_0__, oldsgn, lp_rms__, e_b__, e_f__, r_b__, r_f__, e0ap;
152 
153 /* Arguments */
154 /* Local variables that need not be saved */
155 /* Calculate zero crossings (ZC) and several energy and correlation */
156 /* measures on low band and full band speech. Each measure is taken */
157 /* over either the first or the second half of the voicing window, */
158 /* depending on the variable HALF. */
159  /* Parameter adjustments */
160  --vwin;
161  --buflim;
162  lpbuf_offset = buflim[3];
163  lpbuf -= lpbuf_offset;
164  inbuf_offset = buflim[1];
165  inbuf -= inbuf_offset;
166 
167  /* Function Body */
168  lp_rms__ = 0.f;
169  ap_rms__ = 0.f;
170  e_pre__ = 0.f;
171  e0ap = 0.f;
172  *rc1 = 0.f;
173  e_0__ = 0.f;
174  e_b__ = 0.f;
175  e_f__ = 0.f;
176  r_f__ = 0.f;
177  r_b__ = 0.f;
178  *zc = 0;
179  vlen = vwin[2] - vwin[1] + 1;
180  start = vwin[1] + (*half - 1) * vlen / 2 + 1;
181  stop = start + vlen / 2 - 1;
182 
183 /* I'll use the symbol HVL in the table below to represent the value */
184 /* VLEN/2. Note that if VLEN is odd, then HVL should be rounded down, */
185 /* i.e., HVL = (VLEN-1)/2. */
186 
187 /* HALF START STOP */
188 
189 /* 1 VWIN(1)+1 VWIN(1)+HVL */
190 /* 2 VWIN(1)+HVL+1 VWIN(1)+2*HVL */
191 
192 /* Note that if VLEN is even and HALF is 2, then STOP will be */
193 /* VWIN(1)+VLEN = VWIN(2)+1. That could be bad, if that index of INBUF */
194 /* is undefined. */
195 
196  r__1 = inbuf[start - 1] - *dither;
197  oldsgn = (real)r_sign(&c_b2, &r__1);
198  i__1 = stop;
199  for (i__ = start; i__ <= i__1; ++i__) {
200  lp_rms__ += (r__1 = lpbuf[i__], abs(r__1));
201  ap_rms__ += (r__1 = inbuf[i__], abs(r__1));
202  e_pre__ += (r__1 = inbuf[i__] - inbuf[i__ - 1], abs(r__1));
203 /* Computing 2nd power */
204  r__1 = inbuf[i__];
205  e0ap += r__1 * r__1;
206  *rc1 += inbuf[i__] * inbuf[i__ - 1];
207 /* Computing 2nd power */
208  r__1 = lpbuf[i__];
209  e_0__ += r__1 * r__1;
210 /* Computing 2nd power */
211  r__1 = lpbuf[i__ - *mintau];
212  e_b__ += r__1 * r__1;
213 /* Computing 2nd power */
214  r__1 = lpbuf[i__ + *mintau];
215  e_f__ += r__1 * r__1;
216  r_f__ += lpbuf[i__] * lpbuf[i__ + *mintau];
217  r_b__ += lpbuf[i__] * lpbuf[i__ - *mintau];
218  r__1 = inbuf[i__] + *dither;
219  if (r_sign(&c_b2, &r__1) != oldsgn) {
220  ++(*zc);
221  oldsgn = -oldsgn;
222  }
223  *dither = -(*dither);
224  }
225 /* Normalized short-term autocovariance coefficient at unit sample delay
226  */
227  *rc1 /= max(e0ap,1.f);
228 /* Ratio of the energy of the first difference signal (6 dB/oct preemphas
229 is)*/
230 /* to the energy of the full band signal */
231 /* Computing MAX */
232  r__1 = ap_rms__ * 2.f;
233  *qs = e_pre__ / max(r__1,1.f);
234 /* aR_b is the product of the forward and reverse prediction gains, */
235 /* looking backward in time (the causal case). */
236  *ar_b__ = r_b__ / max(e_b__,1.f) * (r_b__ / max(e_0__,1.f));
237 /* aR_f is the same as aR_b, but looking forward in time (non causal case
238 ).*/
239  *ar_f__ = r_f__ / max(e_f__,1.f) * (r_f__ / max(e_0__,1.f));
240 /* Normalize ZC, LBE, and FBE to old fixed window length of 180. */
241 /* (The fraction 90/VLEN has a range of .58 to 1) */
242  r__2 = (real) (*zc << 1);
243  r__1 = r__2 * (90.f / vlen);
244  *zc = i_nint(&r__1);
245 /* Computing MIN */
246  r__1 = lp_rms__ / 4 * (90.f / vlen);
247  i__1 = i_nint(&r__1);
248  *lbe = min(i__1,32767);
249 /* Computing MIN */
250  r__1 = ap_rms__ / 4 * (90.f / vlen);
251  i__1 = i_nint(&r__1);
252  *fbe = min(i__1,32767);
253  return 0;
254 } /* vparms_ */
integer i_nint(real *x)
Definition: f2clib.c:80
unsigned int stop
Definition: app_meetme.c:1096
static int inbuf(struct baseio *bio, FILE *fi)
utility used by inchar(), for base_encode()
float real
Definition: lpc10.h:79
double r_sign(real *a, real *b)
Definition: f2clib.c:64
#define abs(x)
Definition: f2c.h:195
#define min(a, b)
Definition: f2c.h:197
INT32 integer
Definition: lpc10.h:80
static real c_b2
Definition: vparms.c:35
#define max(a, b)
Definition: f2c.h:198

Variable Documentation

◆ c_b2

real c_b2 = 1.f
static

Definition at line 35 of file vparms.c.

Referenced by vparms_().